Novel Online Dimensionality Reduction Method with Improved Topology Representing and Radial Basis Function Networks
نویسندگان
چکیده
This paper presents improvements to the conventional Topology Representing Network to build more appropriate topology relationships. Based on this improved Topology Representing Network, we propose a novel method for online dimensionality reduction that integrates the improved Topology Representing Network and Radial Basis Function Network. This method can find meaningful low-dimensional feature structures embedded in high-dimensional original data space, process nonlinear embedded manifolds, and map the new data online. Furthermore, this method can deal with large datasets for the benefit of improved Topology Representing Network. Experiments illustrate the effectiveness of the proposed method.
منابع مشابه
Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملCOMPOSITION OF ISOGEOMETRIC ANALYSIS WITH LEVEL SET METHOD FOR STRUCTURAL TOPOLOGY OPTIMIZATION
In the present paper, an approach is proposed for structural topology optimization based on combination of Radial Basis Function (RBF) Level Set Method (LSM) with Isogeometric Analysis (IGA). The corresponding combined algorithm is detailed. First, in this approach, the discrete problem is formulated in Isogeometric Analysis framework. The objective function based on compliance of particular lo...
متن کاملDocument Clustering using Learning from Examples
Information filtering (IF) systems usually filter data items by correlating a set of terms representing the user’s interest with similar sets of terms representing the data items. Many techniques have been employed for constructing user profiles automatically, but they usually yield large sets of data. Various dimensionality-reduction techniques can be applied in order to reduce the number of t...
متن کاملData dimensionality reduction with application to simplifying RBF network structure and improving classification performance
For high dimensional data, if no preprocessing is carried out before inputting patterns to classifiers, the computation required may be too heavy. For example, the number of hidden units of a radial basis function (RBF) neural network can be too large. This is not suitable for some practical applications due to speed and memory constraints. In many cases, some attributes are not relevant to con...
متن کاملApplication of Radial Basis Neural Networks in Fault Diagnosis of Synchronous Generator
This paper presents the application of radial basis neural networks to the development of a novel method for the condition monitoring and fault diagnosis of synchronous generators. In the proposed scheme, flux linkage analysis is used to reach a decision. Probabilistic neural network (PNN) and discrete wavelet transform (DWT) are used in design of fault diagnosis system. PNN as main part of thi...
متن کامل